If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4k^2-10k-36=0
a = 4; b = -10; c = -36;
Δ = b2-4ac
Δ = -102-4·4·(-36)
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-26}{2*4}=\frac{-16}{8} =-2 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+26}{2*4}=\frac{36}{8} =4+1/2 $
| 30+10.50h=138 | | p/4+43=52 | | 4p-24=16p | | -2=c/7 | | 6.25x40-50=x | | x^2+4x=525 | | -6(x+2)=-96 | | 46u-41u-5=50 | | 3(2x-)+7=-44 | | 38+61+x=180 | | 98=5k+13 | | -5+2u=-11 | | 4p+8=18p+15 | | -100=-51+7m | | 6+2/3b=2/4b-4 | | 2.3=o+0.6 | | 4c+11=-5 | | 26+37+x=180 | | -5+2p-6=-21 | | 2x-2x+2x=18 | | 9r+11r+10r-15r+3=18 | | x+35/6=8 | | 7v+1=5 | | 3x^2x-1=27^5x | | T(×)=3×;t(×)=24 | | 3x-12=28.5 | | –24–x=2(x–6) | | 4x–4=6x–4 | | 7v*1=5 | | 45+34+x=180 | | 8(2-3x)=x+2 | | -3r+4-10r=82 |